76 lines
2.5 KiB
Python
76 lines
2.5 KiB
Python
|
|
import os
|
||
|
|
import zipfile
|
||
|
|
import gdown
|
||
|
|
import tensorflow as tf
|
||
|
|
from deepface.commons import functions
|
||
|
|
|
||
|
|
# --------------------------------
|
||
|
|
# dependency configuration
|
||
|
|
|
||
|
|
tf_version = int(tf.__version__.split(".", maxsplit=1)[0])
|
||
|
|
|
||
|
|
if tf_version == 1:
|
||
|
|
from keras.models import Model, Sequential
|
||
|
|
from keras.layers import (
|
||
|
|
Convolution2D,
|
||
|
|
LocallyConnected2D,
|
||
|
|
MaxPooling2D,
|
||
|
|
Flatten,
|
||
|
|
Dense,
|
||
|
|
Dropout,
|
||
|
|
)
|
||
|
|
else:
|
||
|
|
from tensorflow.keras.models import Model, Sequential
|
||
|
|
from tensorflow.keras.layers import (
|
||
|
|
Convolution2D,
|
||
|
|
LocallyConnected2D,
|
||
|
|
MaxPooling2D,
|
||
|
|
Flatten,
|
||
|
|
Dense,
|
||
|
|
Dropout,
|
||
|
|
)
|
||
|
|
|
||
|
|
|
||
|
|
# -------------------------------------
|
||
|
|
# pylint: disable=line-too-long
|
||
|
|
|
||
|
|
|
||
|
|
def loadModel(
|
||
|
|
url="https://github.com/swghosh/DeepFace/releases/download/weights-vggface2-2d-aligned/VGGFace2_DeepFace_weights_val-0.9034.h5.zip",
|
||
|
|
):
|
||
|
|
base_model = Sequential()
|
||
|
|
base_model.add(
|
||
|
|
Convolution2D(32, (11, 11), activation="relu", name="C1", input_shape=(152, 152, 3))
|
||
|
|
)
|
||
|
|
base_model.add(MaxPooling2D(pool_size=3, strides=2, padding="same", name="M2"))
|
||
|
|
base_model.add(Convolution2D(16, (9, 9), activation="relu", name="C3"))
|
||
|
|
base_model.add(LocallyConnected2D(16, (9, 9), activation="relu", name="L4"))
|
||
|
|
base_model.add(LocallyConnected2D(16, (7, 7), strides=2, activation="relu", name="L5"))
|
||
|
|
base_model.add(LocallyConnected2D(16, (5, 5), activation="relu", name="L6"))
|
||
|
|
base_model.add(Flatten(name="F0"))
|
||
|
|
base_model.add(Dense(4096, activation="relu", name="F7"))
|
||
|
|
base_model.add(Dropout(rate=0.5, name="D0"))
|
||
|
|
base_model.add(Dense(8631, activation="softmax", name="F8"))
|
||
|
|
|
||
|
|
# ---------------------------------
|
||
|
|
|
||
|
|
home = functions.get_deepface_home()
|
||
|
|
|
||
|
|
if os.path.isfile(home + "/.deepface/weights/VGGFace2_DeepFace_weights_val-0.9034.h5") != True:
|
||
|
|
print("VGGFace2_DeepFace_weights_val-0.9034.h5 will be downloaded...")
|
||
|
|
|
||
|
|
output = home + "/.deepface/weights/VGGFace2_DeepFace_weights_val-0.9034.h5.zip"
|
||
|
|
|
||
|
|
gdown.download(url, output, quiet=False)
|
||
|
|
|
||
|
|
# unzip VGGFace2_DeepFace_weights_val-0.9034.h5.zip
|
||
|
|
with zipfile.ZipFile(output, "r") as zip_ref:
|
||
|
|
zip_ref.extractall(home + "/.deepface/weights/")
|
||
|
|
|
||
|
|
base_model.load_weights(home + "/.deepface/weights/VGGFace2_DeepFace_weights_val-0.9034.h5")
|
||
|
|
|
||
|
|
# drop F8 and D0. F7 is the representation layer.
|
||
|
|
deepface_model = Model(inputs=base_model.layers[0].input, outputs=base_model.layers[-3].output)
|
||
|
|
|
||
|
|
return deepface_model
|