""" File: train_emotion_classifier.py Author: Octavio Arriaga Email: arriaga.camargo@gmail.com Github: https://github.com/oarriaga Description: Train emotion classification model """ from keras.callbacks import CSVLogger, ModelCheckpoint, EarlyStopping from keras.callbacks import ReduceLROnPlateau from keras.preprocessing.image import ImageDataGenerator from models.cnn import mini_XCEPTION from utils.datasets import DataManager from utils.datasets import split_data from utils.preprocessor import preprocess_input # parameters batch_size = 32 num_epochs = 10000 input_shape = (64, 64, 1) validation_split = .2 verbose = 1 num_classes = 7 patience = 50 base_path = '../trained_models/emotion_models/' # data generator data_generator = ImageDataGenerator( featurewise_center=False, featurewise_std_normalization=False, rotation_range=10, width_shift_range=0.1, height_shift_range=0.1, zoom_range=.1, horizontal_flip=True) # model parameters/compilation model = mini_XCEPTION(input_shape, num_classes) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) model.summary() datasets = ['fer2013'] for dataset_name in datasets: print('Training dataset:', dataset_name) # callbacks log_file_path = base_path + dataset_name + '_emotion_training.log' csv_logger = CSVLogger(log_file_path, append=False) early_stop = EarlyStopping('val_loss', patience=patience) reduce_lr = ReduceLROnPlateau('val_loss', factor=0.1, patience=int(patience/4), verbose=1) trained_models_path = base_path + dataset_name + '_mini_XCEPTION' model_names = trained_models_path + '.{epoch:02d}-{val_acc:.2f}.hdf5' model_checkpoint = ModelCheckpoint(model_names, 'val_loss', verbose=1, save_best_only=True) callbacks = [model_checkpoint, csv_logger, early_stop, reduce_lr] # loading dataset data_loader = DataManager(dataset_name, image_size=input_shape[:2]) faces, emotions = data_loader.get_data() faces = preprocess_input(faces) num_samples, num_classes = emotions.shape train_data, val_data = split_data(faces, emotions, validation_split) train_faces, train_emotions = train_data model.fit_generator(data_generator.flow(train_faces, train_emotions, batch_size), steps_per_epoch=len(train_faces) / batch_size, epochs=num_epochs, verbose=1, callbacks=callbacks, validation_data=val_data)