import os import gdown import tensorflow as tf from deepface.basemodels import VGGFace from deepface.commons import functions # ------------------------------------- # pylint: disable=line-too-long # ------------------------------------- # dependency configurations tf_version = int(tf.__version__.split(".", maxsplit=1)[0]) if tf_version == 1: from keras.models import Model, Sequential from keras.layers import Convolution2D, Flatten, Activation elif tf_version == 2: from tensorflow.keras.models import Model, Sequential from tensorflow.keras.layers import Convolution2D, Flatten, Activation # ------------------------------------- # Labels for the genders that can be detected by the model. labels = ["Woman", "Man"] def loadModel( url="https://github.com/serengil/deepface_models/releases/download/v1.0/gender_model_weights.h5", ): model = VGGFace.baseModel() # -------------------------- classes = 2 base_model_output = Sequential() base_model_output = Convolution2D(classes, (1, 1), name="predictions")(model.layers[-4].output) base_model_output = Flatten()(base_model_output) base_model_output = Activation("softmax")(base_model_output) # -------------------------- gender_model = Model(inputs=model.input, outputs=base_model_output) # -------------------------- # load weights home = functions.get_deepface_home() if os.path.isfile(home + "/.deepface/weights/gender_model_weights.h5") != True: print("gender_model_weights.h5 will be downloaded...") output = home + "/.deepface/weights/gender_model_weights.h5" gdown.download(url, output, quiet=False) gender_model.load_weights(home + "/.deepface/weights/gender_model_weights.h5") return gender_model