import os import numpy as np import cv2 as cv import gdown from deepface.commons import functions # pylint: disable=line-too-long, too-few-public-methods class _Layer: input_shape = (None, 112, 112, 3) output_shape = (None, 1, 128) class SFaceModel: def __init__(self, model_path): self.model = cv.FaceRecognizerSF.create( model=model_path, config="", backend_id=0, target_id=0 ) self.layers = [_Layer()] def predict(self, image): # Preprocess input_blob = (image[0] * 255).astype( np.uint8 ) # revert the image to original format and preprocess using the model # Forward embeddings = self.model.feature(input_blob) return embeddings def load_model( url="https://github.com/opencv/opencv_zoo/raw/master/models/face_recognition_sface/face_recognition_sface_2021dec.onnx", ): home = functions.get_deepface_home() file_name = home + "/.deepface/weights/face_recognition_sface_2021dec.onnx" if not os.path.isfile(file_name): print("sface weights will be downloaded...") gdown.download(url, file_name, quiet=False) model = SFaceModel(model_path=file_name) return model