import os import gdown import numpy as np import tensorflow as tf from deepface.basemodels import VGGFace from deepface.commons import functions # ---------------------------------------- # dependency configurations tf_version = int(tf.__version__.split(".", maxsplit=1)[0]) if tf_version == 1: from keras.models import Model, Sequential from keras.layers import Convolution2D, Flatten, Activation elif tf_version == 2: from tensorflow.keras.models import Model, Sequential from tensorflow.keras.layers import Convolution2D, Flatten, Activation # ---------------------------------------- def loadModel( url="https://github.com/serengil/deepface_models/releases/download/v1.0/age_model_weights.h5", ): model = VGGFace.baseModel() # -------------------------- classes = 101 base_model_output = Sequential() base_model_output = Convolution2D(classes, (1, 1), name="predictions")(model.layers[-4].output) base_model_output = Flatten()(base_model_output) base_model_output = Activation("softmax")(base_model_output) # -------------------------- age_model = Model(inputs=model.input, outputs=base_model_output) # -------------------------- # load weights home = functions.get_deepface_home() if os.path.isfile(home + "/.deepface/weights/age_model_weights.h5") != True: print("age_model_weights.h5 will be downloaded...") output = home + "/.deepface/weights/age_model_weights.h5" gdown.download(url, output, quiet=False) age_model.load_weights(home + "/.deepface/weights/age_model_weights.h5") return age_model # -------------------------- def findApparentAge(age_predictions): output_indexes = np.array(list(range(0, 101))) apparent_age = np.sum(age_predictions * output_indexes) return apparent_age