import os import gdown import tensorflow as tf from deepface.commons import functions # ------------------------------------------- # pylint: disable=line-too-long # ------------------------------------------- # dependency configuration tf_version = int(tf.__version__.split(".", maxsplit=1)[0]) if tf_version == 1: from keras.models import Sequential from keras.layers import Conv2D, MaxPooling2D, AveragePooling2D, Flatten, Dense, Dropout elif tf_version == 2: from tensorflow.keras.models import Sequential from tensorflow.keras.layers import ( Conv2D, MaxPooling2D, AveragePooling2D, Flatten, Dense, Dropout, ) # ------------------------------------------- # Labels for the emotions that can be detected by the model. labels = ["angry", "disgust", "fear", "happy", "sad", "surprise", "neutral"] def loadModel( url="https://github.com/serengil/deepface_models/releases/download/v1.0/facial_expression_model_weights.h5", ): num_classes = 7 model = Sequential() # 1st convolution layer model.add(Conv2D(64, (5, 5), activation="relu", input_shape=(48, 48, 1))) model.add(MaxPooling2D(pool_size=(5, 5), strides=(2, 2))) # 2nd convolution layer model.add(Conv2D(64, (3, 3), activation="relu")) model.add(Conv2D(64, (3, 3), activation="relu")) model.add(AveragePooling2D(pool_size=(3, 3), strides=(2, 2))) # 3rd convolution layer model.add(Conv2D(128, (3, 3), activation="relu")) model.add(Conv2D(128, (3, 3), activation="relu")) model.add(AveragePooling2D(pool_size=(3, 3), strides=(2, 2))) model.add(Flatten()) # fully connected neural networks model.add(Dense(1024, activation="relu")) model.add(Dropout(0.2)) model.add(Dense(1024, activation="relu")) model.add(Dropout(0.2)) model.add(Dense(num_classes, activation="softmax")) # ---------------------------- home = functions.get_deepface_home() if os.path.isfile(home + "/.deepface/weights/facial_expression_model_weights.h5") != True: print("facial_expression_model_weights.h5 will be downloaded...") output = home + "/.deepface/weights/facial_expression_model_weights.h5" gdown.download(url, output, quiet=False) model.load_weights(home + "/.deepface/weights/facial_expression_model_weights.h5") return model