111 lines
3.3 KiB
Python
111 lines
3.3 KiB
Python
import os
|
|
import gdown
|
|
import tensorflow as tf
|
|
from deepface.commons import functions
|
|
|
|
# ---------------------------------------
|
|
|
|
tf_version = int(tf.__version__.split(".", maxsplit=1)[0])
|
|
|
|
if tf_version == 1:
|
|
from keras.models import Model, Sequential
|
|
from keras.layers import (
|
|
Convolution2D,
|
|
ZeroPadding2D,
|
|
MaxPooling2D,
|
|
Flatten,
|
|
Dropout,
|
|
Activation,
|
|
)
|
|
else:
|
|
from tensorflow.keras.models import Model, Sequential
|
|
from tensorflow.keras.layers import (
|
|
Convolution2D,
|
|
ZeroPadding2D,
|
|
MaxPooling2D,
|
|
Flatten,
|
|
Dropout,
|
|
Activation,
|
|
)
|
|
|
|
# ---------------------------------------
|
|
|
|
|
|
def baseModel():
|
|
model = Sequential()
|
|
model.add(ZeroPadding2D((1, 1), input_shape=(224, 224, 3)))
|
|
model.add(Convolution2D(64, (3, 3), activation="relu"))
|
|
model.add(ZeroPadding2D((1, 1)))
|
|
model.add(Convolution2D(64, (3, 3), activation="relu"))
|
|
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
|
|
|
|
model.add(ZeroPadding2D((1, 1)))
|
|
model.add(Convolution2D(128, (3, 3), activation="relu"))
|
|
model.add(ZeroPadding2D((1, 1)))
|
|
model.add(Convolution2D(128, (3, 3), activation="relu"))
|
|
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
|
|
|
|
model.add(ZeroPadding2D((1, 1)))
|
|
model.add(Convolution2D(256, (3, 3), activation="relu"))
|
|
model.add(ZeroPadding2D((1, 1)))
|
|
model.add(Convolution2D(256, (3, 3), activation="relu"))
|
|
model.add(ZeroPadding2D((1, 1)))
|
|
model.add(Convolution2D(256, (3, 3), activation="relu"))
|
|
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
|
|
|
|
model.add(ZeroPadding2D((1, 1)))
|
|
model.add(Convolution2D(512, (3, 3), activation="relu"))
|
|
model.add(ZeroPadding2D((1, 1)))
|
|
model.add(Convolution2D(512, (3, 3), activation="relu"))
|
|
model.add(ZeroPadding2D((1, 1)))
|
|
model.add(Convolution2D(512, (3, 3), activation="relu"))
|
|
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
|
|
|
|
model.add(ZeroPadding2D((1, 1)))
|
|
model.add(Convolution2D(512, (3, 3), activation="relu"))
|
|
model.add(ZeroPadding2D((1, 1)))
|
|
model.add(Convolution2D(512, (3, 3), activation="relu"))
|
|
model.add(ZeroPadding2D((1, 1)))
|
|
model.add(Convolution2D(512, (3, 3), activation="relu"))
|
|
model.add(MaxPooling2D((2, 2), strides=(2, 2)))
|
|
|
|
model.add(Convolution2D(4096, (7, 7), activation="relu"))
|
|
model.add(Dropout(0.5))
|
|
model.add(Convolution2D(4096, (1, 1), activation="relu"))
|
|
model.add(Dropout(0.5))
|
|
model.add(Convolution2D(2622, (1, 1)))
|
|
model.add(Flatten())
|
|
model.add(Activation("softmax"))
|
|
|
|
return model
|
|
|
|
|
|
# url = 'https://drive.google.com/uc?id=1CPSeum3HpopfomUEK1gybeuIVoeJT_Eo'
|
|
|
|
|
|
def loadModel(
|
|
url="https://github.com/serengil/deepface_models/releases/download/v1.0/vgg_face_weights.h5",
|
|
):
|
|
|
|
model = baseModel()
|
|
|
|
# -----------------------------------
|
|
|
|
home = functions.get_deepface_home()
|
|
output = home + "/.deepface/weights/vgg_face_weights.h5"
|
|
|
|
if os.path.isfile(output) != True:
|
|
print("vgg_face_weights.h5 will be downloaded...")
|
|
gdown.download(url, output, quiet=False)
|
|
|
|
# -----------------------------------
|
|
|
|
model.load_weights(output)
|
|
|
|
# -----------------------------------
|
|
|
|
# TO-DO: why?
|
|
vgg_face_descriptor = Model(inputs=model.layers[0].input, outputs=model.layers[-2].output)
|
|
|
|
return vgg_face_descriptor
|