2025-05-28 19:16:17 +08:00

76 lines
2.3 KiB
Python

import os
import gdown
import tensorflow as tf
from deepface.commons import functions
# -------------------------------------------
# pylint: disable=line-too-long
# -------------------------------------------
# dependency configuration
tf_version = int(tf.__version__.split(".", maxsplit=1)[0])
if tf_version == 1:
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, AveragePooling2D, Flatten, Dense, Dropout
elif tf_version == 2:
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import (
Conv2D,
MaxPooling2D,
AveragePooling2D,
Flatten,
Dense,
Dropout,
)
# -------------------------------------------
# Labels for the emotions that can be detected by the model.
labels = ["angry", "disgust", "fear", "happy", "sad", "surprise", "neutral"]
def loadModel(
url="https://github.com/serengil/deepface_models/releases/download/v1.0/facial_expression_model_weights.h5",
):
num_classes = 7
model = Sequential()
# 1st convolution layer
model.add(Conv2D(64, (5, 5), activation="relu", input_shape=(48, 48, 1)))
model.add(MaxPooling2D(pool_size=(5, 5), strides=(2, 2)))
# 2nd convolution layer
model.add(Conv2D(64, (3, 3), activation="relu"))
model.add(Conv2D(64, (3, 3), activation="relu"))
model.add(AveragePooling2D(pool_size=(3, 3), strides=(2, 2)))
# 3rd convolution layer
model.add(Conv2D(128, (3, 3), activation="relu"))
model.add(Conv2D(128, (3, 3), activation="relu"))
model.add(AveragePooling2D(pool_size=(3, 3), strides=(2, 2)))
model.add(Flatten())
# fully connected neural networks
model.add(Dense(1024, activation="relu"))
model.add(Dropout(0.2))
model.add(Dense(1024, activation="relu"))
model.add(Dropout(0.2))
model.add(Dense(num_classes, activation="softmax"))
# ----------------------------
home = functions.get_deepface_home()
if os.path.isfile(home + "/.deepface/weights/facial_expression_model_weights.h5") != True:
print("facial_expression_model_weights.h5 will be downloaded...")
output = home + "/.deepface/weights/facial_expression_model_weights.h5"
gdown.download(url, output, quiet=False)
model.load_weights(home + "/.deepface/weights/facial_expression_model_weights.h5")
return model